ON CERTAIN NONLINEAR PSEUDOPARABOLIC VARIATIONAL INEQUALITIES WITHOUT INITIAL CONDITIONS

S. P. Lavrenyuk and M. B. Ptashnyk

We consider a nonlinear pseudoparabolic variational inequality in a tube domain semibounded in variable t. Under certain conditions imposed on coefficients of the inequality, we prove the theorems of existence and uniqueness of a solution without any restriction on its behavior as $t \to -\infty$.

It is known that fluid filtration in media with double porosity [1], heat transfer in a heterogeneous medium [2], and moisture transfer in soil [3] are modelled by boundary-value problems for pseudoparabolic equations. The general theory of such equations and boundary conditions for them were a subject of investigations of many authors [3–15]. For example, problems without initial conditions for some pseudoparabolic systems were investigated in [14, 15].

Pseudoparabolic variational inequalities make it possible to obtain the conditions for correct solvability of some other boundary-value problems for pseudoparabolic equations.

In the present paper, we prove the correctness of a nonlinear pseudoparabolic variational inequality without initial conditions in the class of functions with arbitrary behavior as $t \to -\infty$.

Note that certain parabolic variational inequalities without initial conditions were investigated in [16–18]. Moreover, the conditions for unique solvability of a pseudoparabolic inequality generated by a linear pseudoparabolic operator were obtained in [19]. In this case, the behavior of a solution was restricted by the condition that it increase not faster than $e^{-\lambda t}$ as $t \to -\infty$, where λ is determined by coefficients of the inequality. The results presented in [19] cannot be obtained from the present paper.

Let Ω be a bounded region of the space \mathbb{R}^n with the boundary $\partial \Omega \subset C^1$, $Q_T = \Omega \times (-\infty, T)$, $T < \infty$, $\Omega_{t_1} = \Omega \times (t_1, t_2)$, $t_1 < t_2 < T$, $\Omega_T = Q_T \cap \{ t = \tau \}$, let V be a closed subspace continuously and compactly imbedded in $L^2(\Omega)$, $H^1(\Omega) \cap W^{1,p}(\Omega) \subset V \subset H^1(\Omega) \cap W^{1,p}(\Omega)$, $p > 2$, and let K be a closed convex subset in V which contains the zero element.

We define a norm in the space V as the norm of the space $H^1(\Omega) \cap W^{1,p}(\Omega)$.

Consider the following variational inequality:

$$
\int_{Q_{t_1,t_2}} v(t) (v - u) + \sum_{i,j=1}^n b_{ij}(x,t) (v_{x_i} - u_{x_j}) v_{x_j} - u_{x_j} \\
+ \sum_{i,j=1}^n a_{ij}(x,t) u_{x_i} (v_{x_j} - u_{x_j}) + \frac{1}{2} \sum_{i,j=1}^n b_{ij,t}(x,t) (v_{x_i} - u_{x_i}) (v_{x_j} - u_{x_j}) \\
+ \sum_{i=1}^n c_i(x,t) u_{x_i} (v - u) + c_0(x,t) u (v - u) \\
+ \sum_{i=1}^n \alpha_i(x) |u_{x_i}|^{p-2} u_{x_i} (v_{x_i} - u_{x_i}) + g(x) |u|^{p-2} u (v - u) - f_0(x,t) (v - u)
$$
ON CERTAIN NONLINEAR PSEUDOPARABOLIC VARIATIONAL INEQUALITIES WITHOUT INITIAL CONDITIONS

\[- \frac{1}{2} \sum_{i=1}^{n} f_i(x, t) (v_{x_i} - u_{x_i}) \] \[\geq \frac{1}{2} \int_{Q_T} \left[\sum_{i,j=1}^{n} b_{ij}(x, t_2) (v_{x_i} - u_{x_i})(v_{x_j} - u_{x_j}) + (v-u)^2 \right] dx \]

\[- \frac{1}{2} \int_{Q_T} \left[\sum_{i,j=1}^{n} b_{ij}(x, t_1) (v_{x_i} - u_{x_i})(v_{x_j} - u_{x_j}) + (v-u)^2 \right] dx. \]

(1)

Definition 1. A solution of inequality (1) is a function \(u(x, t) \) such that: \(u \in L^2_{\text{loc}}((-\infty, T]; H^1(\Omega)), u \in L^2_{\text{loc}}((-\infty, T]; w_{-\infty}^p(x)) \) and \(u \in K \) for almost all \(t \in (-\infty, T] \), \(u(x, t) \) satisfies (1) for all \(t_1, t_2 \in (-\infty, T], t_1 < t_2 \), and for all functions \(v(x, t) \) such that \(v \in H^2_{\text{loc}}((-\infty, T]; H^1(\Omega)) \cap L^p_{\text{loc}}((-\infty, T]; W^{1,p}(\Omega)) \) and \(v \in K \) for almost all \(t \in (-\infty, T] \).

Let the coefficients of inequality (1) satisfy, respectively, the following conditions:

condition A_1:

\[a_{ij} \in L^\infty(Q_T), \quad i, j = 1, \ldots, n, \quad \sum_{i,j=1}^{n} a_{ij}(x, t) \xi_i \xi_j \geq a_0 \sum_{i=1}^{n} \xi_i^2, \quad a_0 > 0, \]

for almost all \(\xi \in \mathbb{R}^n \) and almost all \((x, t) \in Q_T \),

condition A_2:

\[\alpha_i \in L^\infty(\Omega), \quad \alpha_i(x) \geq \alpha_0 > 0, \quad i = 1, \ldots, n, \]

condition B:

\[b_{ij}(x, t) = b_{ji}(x, t), \quad b_{ij}, b_{ij} \in L^\infty(Q_T), \quad i, j = 1, \ldots, n, \]

\[b_k \sum_{i=1}^{n} \xi_i^2 \leq \sum_{i,j=1}^{n} \frac{\partial^k b_{ij}(x, t)}{\partial t^k} \xi_i \xi_j \leq b_k \sum_{i=1}^{n} \xi_i^2, \]

\[b_0 > 0, \quad k = 0, 1; \quad b = \min \{ b_1, -b^1 \} \]

for all \(\xi \in \mathbb{R}^n \) and almost all \((x, t) \in Q_T \),

condition C:

\[c_i \in L^\infty(Q_T), \quad i = 1, \ldots, n, \quad \sup_{Q_T} \sum_{i=1}^{n} c_i^2(x, t) = c^1, \]

\[c_0 \in L^2_{\text{loc}}((-\infty, T]; L^\infty(\Omega)), \quad c_0(x, t) \geq c^0 > 0, \quad (x, t) \in Q_T, \]
condition G:

\[g \in L^\infty(\Omega), \quad g(x) \geq g_0 > 0, \quad x \in \Omega. \]

Theorem 1. Let the coefficients of inequality (1) satisfy conditions A, A_2, B, C, and G, and, moreover, let \((4a_0 - 2b^1) c^0 > c^1\). Then inequality (1) cannot have more than one solution.

Proof. Define operators \(A \) and \(B_1 \) according to the following formulas:

\[
\langle Aw_1, w_2 \rangle(t) = \int_\Omega \left(\sum_{i,j=1}^n a_{ij}(x,t) w_{1x_i} w_{2x_j} + \sum_{i=1}^n \alpha_i(x) |w_{1x_i}|^{p-2} w_{1x_i} w_{2x_j} \right) dx,
\]

\[
+ \sum_{i=1}^n c_i(x,t) w_{1x_i}^2 + c_0(x,t) w_1^2 + g(x) |w_1|^{p-2} w_1 w_2 \right) dx, \]

\[
\langle B_1 w_1, w_2 \rangle = \frac{1}{2} \int_\Omega \sum_{i,j=1}^n b_{ij}(x,t) w_{1x_i} w_{2x_j} dx,
\]

where \(w_1, w_2 \) are arbitrary functions from \(V \).

It is easy to verify that, under the conditions of the theorem, the operator \(A - B_1 \) is uniformly monotone. Indeed,

\[
\langle (A - B_1) w^1 - (A - B_1) w^2, w^1 - w^2 \rangle \geq \int_\Omega \left[\left(a_0 - \frac{b^1 + c^1 \delta_0}{2} \right) \sum_{i=1}^n |w_{1x_i}^1 - w_{1x_i}^2|^2 + \left(c^0 - \frac{1}{2\delta_0} \right) |w_1^1 - w_2^1|^2 \right. \]

\[
+ 2^{2-p} |a_0| \sum_{i} |w_{1x_i}^1 - w_{1x_i}^2|^p + 2^{2-p} g_0 |w_1^1 - w_2^1|^p \left. \right] dx \]

\[
\geq \beta_0 \int_\Omega \left(\sum_{i,j} b_{ij}(x,t) |w_{1x_i}^1 - w_{1x_i}^2| |(w_{1x_j}^1 - w_{2x_j}^2) + (w_1^1 - w_2^1)^2 \right) dx, \quad (2)
\]

where \(\beta_0 = (n + 1)(2-p)/2 \) \(2^{2-p} \min \{a_0, g_0\} \left(\min \left\{ 1, \frac{1}{b_0} \right\} \right)^{p/2} \).

Let \(u^1(x, t) \) and \(u^2(x, t) \) be two solutions of inequality (1). Then, for the function \(v(x, t) = \frac{1}{2} (u^1(x, t) + u^2(x, t)) \), the following inequalities are valid:

\[
\int_{Q_{t_1,t_2}} \left[(v - f^k)(v - u^k) + \sum_{i,j=1}^n b_{ij} v_{x_i,t} (v_{x_j} - u_{x_j}^k) + \frac{1}{2} \sum_{i,j=1}^n b_{ij} (v_{x_j} - u_{x_j}^k)(v_{x_j} - u_{x_j}^k) \right] dx dt
\]
ON CERTAIN NONLINEAR PSEUDOPARABOLIC VARIATIONAL INEQUALITIES WITHOUT INITIAL CONDITIONS

\[
\geq \frac{1}{2} \int_{Q_T} \left[\sum_{i,j=1}^{n} b_{ij} (v_{x_i} - u^k_{x_i})(v_{x_j} - u^k_{x_j}) + (v - u^k)^2 \right] dx
\]

\[
- \frac{1}{2} \int_{Q_T} \left[\sum_{i,j=1}^{n} b_{ij} (v_{x_i} - u^k_{x_i})(v_{x_j} - u^k_{x_j}) + (v - u^k)^2 \right] dx,
\]

where

\[
f^k = f_0 - \sum_{i=1}^{n} f_{i,x_i} - Au^k, \quad k = 1, 2.
\]

By summing these two inequalities, we obtain

\[
\int_{Q_{t_1,t_2}} \left[(f^1 - f^2)(u^1 - u^2) + \frac{1}{2} \sum_{i,j=1}^{n} b_{ij} (u^1_{x_i} - u^2_{x_i})(u^1_{x_j} - u^2_{x_j}) + (u^1 - u^2)^2 \right] dx \, dt
\]

\[
\geq \frac{1}{2} \int_{Q_T} \left[\sum_{i,j=1}^{n} b_{ij} (u^1_{x_i} - u^2_{x_i})(u^1_{x_j} - u^2_{x_j}) + (u^1 - u^2)^2 \right] dx
\]

\[
- \frac{1}{2} \int_{Q_{t_1}} \left[\sum_{i,j=1}^{n} b_{ij} (u^1_{x_i} - u^2_{x_i})(u^1_{x_j} - u^2_{x_j}) + (u^1 - u^2)^2 \right] dx.
\]

In view of the expressions of the functions \(f^k, \ k = 1, 2, \) we can rewrite estimate (3) in the form

\[
\frac{1}{2} \int_{t_1}^{t_2} \frac{d}{dt} \left(\int_{\Omega} \left[\sum_{i,j=1}^{n} b_{ij}(x,t)(u^1_{x_i} - u^2_{x_i})(u^1_{x_j} - u^2_{x_j}) + (u^1 - u^2)^2 \right] dx \right) dt
\]

\[
+ \int_{t_1}^{t_2} \langle (A - B_1)u^1 - (A - B_2)u^2, u^1 - u^2 \rangle \, dt \leq 0.
\]

Hence, by using estimate (2), we obtain the inequality

\[
\int_{t_1}^{t_2} (y'(t) + \beta_1(y(t))^{\nu/2}) \, dt \leq 0,
\]

where

\[
y(t) = \int_{\Omega} \left[\sum_{i,j=1}^{n} b_{ij}(u^1_{x_i} - u^2_{x_i})(u^1_{x_j} - u^2_{x_j}) + (u^1 - u^2)^2 \right] dx,
\]
Since the numbers \(t_1 \) and \(t_2 \) are arbitrary, we obtain from estimate (4) the inequality
\[
y'(t) + \beta_1 (y(t))^{p/2} \leq 0
\]
for almost all \(t \in (-\infty, T] \).

Then, by virtue of Lemma 2 in [20], we have \(y(t) = 0 \) for almost all \(t \in (-\infty, T] \), i.e., \(u^1(x, t) = u^2(x, t) \) almost everywhere in \(Q_T \). Theorem 1 is proved.

Theorem 2. Let the coefficients of inequality (1) satisfy conditions \(A_f, A_B, B, C, \) and \(G \), and, moreover, let
\[
a_{ij,t} \in L^\infty(\Omega_T), \quad i, j = 1, \ldots, n, \quad c_i, t \in L^1(\Omega_T), \quad i = 0, 1, \ldots, n.
\]
Let there exist a positive number \(\gamma \) such that
\[
p_0 = 2a_0 - 2b^0 \gamma - b > 0, \quad 2(g_0 - \gamma)p_0 > h_1,
\]
\[
\int_{\Omega_T} \sum_{i=0}^{n} \left(f^2_i(x, t) + f^3_i(x, t)\right)e^{2\gamma t'} \, dt < \infty.
\]
Then there exists a solution \(u(x, t) \) of inequality (1).

Proof. Consider a sequence of functions \(\{\psi^i\} \) which possess the following properties: \(\psi^i \in W^{1,p}(\Omega), \quad i = 1, 2, \ldots \), the functions \(\psi^1, \ldots, \psi^k \) are linearly independent for arbitrary \(k \), and linear combinations of \(\psi^i \) are dense in \(W^{1,p}(\Omega) \).

Let
\[
u^N(x, t) = \sum_{k=1}^{N} c_k^N(t) \psi^k(x), \quad N = 1, 2, \ldots,
\]
where \(c_1^N, \ldots, c_N^N \) is a solution of the Cauchy problem
\[
\int_{\Omega_T} \left[u^N \psi^k + \sum_{i,j=1}^{n} b_{ij} u^N_{x_i} \psi^k_{x_j} + \sum_{i,j=1}^{n} a_{ij} u^N_{x_i} \psi^k_{x_j} + \sum_{i=1}^{n} c_i u^N \psi^k + c_0 u^N \psi^k
\]
\[
+ \sum_{i=1}^{n} \alpha_i |u^N|^{p-2} u^N \psi^k_{x_i} + g |u^N|^{p-2} u^N \psi^k - f_{i0} \psi^k - \sum_{i=1}^{n} f^0_i \psi^k_{x_i} \right] \, dx
\]
\[
+ \frac{1}{\varepsilon} \langle B(u^N \psi^k), \psi^k \rangle = 0, \quad t \in [t_0, T],
\]
\[
c_k^N(t_0) = 0, \quad k = 1, 2, \ldots, N.
\]
Here, \(\varepsilon > 0 \), \(B \) is the penalty operator [16, p. 384], \(B(u) = J(u - P_ku) \), \(J \) is the operator of duality between the spaces \(H^1(\Omega) \) and \((H^1(\Omega))^* \), \(P \) is the operator of projection on the set \(K \), and
ON CERTAIN NONLINEAR PSEUDOPARABOLIC VARIATIONAL INEQUALITIES WITHOUT INITIAL CONDITIONS

\[f_i^{(0)}(x, t) = \begin{cases} f_i(x, t), & \text{if } (x, t) \in Q_{0,T}; \\ 0, & \text{if } (x, t) \in Q_{0_0}. \end{cases} \]

The existence of a solution of problem (5), (6) stems from the following \textit{a priori} estimates. Continue the functions \(c_k^N(t)\) by zero to the interval \((-\infty, t_0]\) and perform the substitution \(u^N(x, t) = v^N(x, t)e^{-\gamma t}\) in system (5). Then \(u_i^N(x, t) = v_i^N(x, t)e^{-\gamma t} - \gamma v_i^N(x, t)e^{-\gamma t}\), and problem (5), (6) acquires the form

\[
\int_{Q_T} [v_i^N \phi_k^N + \sum_{i,j=1}^n b_{ij} v_{x_i,t}^N \phi_{x_j}^k + \sum_{i,j=1}^n (a_{ij} - \gamma b_{ij}) v_{x_i}^N v_{x_j}^N] \\
+ \sum_{i=1}^n c_i v_i^N \phi_k^N + (c_0 - \gamma) v_i^N \phi_k^N + e^{-\gamma(p-2)t} \sum_{i=1}^n \alpha_i |v_{x_i}^N|^p v_i^N \phi_{x_i}^k \\
+ e^{-\gamma(p-2)t} g |v_i^N|^{p-2} v_i^N \phi_k^N \left(f_i^{(0)} \phi_k^N + \sum_{i=1}^n f_i^{(0)} \phi_{x_i}^k \right) e^{\gamma t} \] dx + \frac{1}{\varepsilon} \langle B(v^N), \phi_k \rangle = 0, \quad (7)
\]

\(v_i^N(t_0) = 0\). \quad (8)

Multiplying each equation of system (7), respectively, by the function \(c_k^N(t)e^{\gamma t}\), summing them over the index \(k\) from 1 to \(N\), and integrating over the segment \([t_1, \tau] \subset [t_0, T]\), we obtain

\[
\int_{Q_{t_1, \tau}} [v_i^N v_i^N + \sum_{i,j=1}^n b_{ij} v_{x_i,t}^N v_{x_j}^N + \sum_{i,j=1}^n (a_{ij} - \gamma b_{ij}) v_{x_i}^N v_{x_j}^N] \\
+ \sum_{i=1}^n c_i v_i^N v_i^N + (c_0 - \gamma)(v_i^N)^2 + e^{-\gamma(p-2)t} \left(\sum_{i=1}^n \alpha_i |v_{x_i}^N|^p + g |v_i^N|^p \right) \\
- \left(f_i^{(0)} + \sum_{i=1}^n f_i^{(0)} v_{x_i}^N \right) e^{\gamma t} \right] dx dt + \frac{1}{\varepsilon} \langle B(v^N), v_i^N \rangle dt = 0. \quad (9)
\]

On the basis of the conditions of the theorem, one easily obtains the following estimates from equality (9):

\[
\int_{Q_{t_1}} \left(|v_i^N|^2 + \sum_{i=1}^n |v_{x_i}^N|^2 \right) dx \leq \mu_1 F_{0, \gamma}, \quad (10)
\]

\[
\int_{Q_{t_1, \tau}} \left(|v_i^N|^2 + \sum_{i=1}^n |v_{x_i}^N|^2 \right) dx dt \leq \mu_1 F_{0, \gamma}, \quad (11)
\]

\[
\int_{Q_{t_1, \tau}} e^{-\gamma(p-2)t} \left(|v_i^N|^p + \sum_{i=1}^n |v_{x_i}^N|^{p-2} \right) dx dt \leq \mu_1 F_{0, \gamma}. \quad (12)
\]
\[
\int_{t_1}^{T} \langle B(v^N), v^N \rangle dt \leq \mu_1 \varepsilon F_{0, \gamma},
\]

where \(\tau \in [t_1, T] \), the constant \(\mu_1 \) is independent of \(\varepsilon, n, \) and \(t_1 \), and

\[
F_{0, \gamma} = \int \sum_{Q_\tau} |f_i(x, t)|^2 e^{2 \gamma t} dx dt.
\]

We differentiate equation (7) with respect to the variable \(t \), multiply each equation, respectively, by the function \((c^N_k(t) + \gamma c^N_k(t)) e^{\gamma t} \), then sum them over \(k \) from 1 to \(N \) and integrate over the segment \([t_1, \tau]\). As a result, we obtain the equality

\[
\int_{Q_{t_1, \tau}} \left[v^N_{w,t} v^N_t + \sum_{i,j=1}^{n} b_{ij} v^N_{x_i,t} v^N_{x_j,t} + \sum_{i,j=1}^{n} (a_{ij} - \gamma b_{ij} + b_{ij,t}) v^N_{x_i,t} v^N_{x_j,t} \right]
\]

\[
+ \sum_{i=1}^{n} c_i v^N_{x_i,t} v^N_t + (c_0 - \gamma)(v^N_t)^2 \right] dx dt
\]

\[
+ (p - 1) \int_{Q_{t_1, \tau}} e^{-\gamma(p-2)t} \left[\sum_{i=1}^{n} \alpha_i |v^N_{x_i}|^{p-2} (v^N_{x_i,t})^2 + g |v^N|^{p-2} (v^N_t)^2 \right] dx dt
\]

\[
- \gamma (p-2) \int_{Q_{t_1, \tau}} e^{-\gamma(p-2)t} \left[\sum_{i=1}^{n} \alpha_i |v^N_{x_i}|^{p-2} v^N_{x_i,t} v^N_t + g |v^N|^{p-2} v^N_t v^N_t \right] dx dt
\]

\[
+ \int_{Q_{t_1, \tau}} \left[\sum_{i,j=1}^{n} (a_{ij,t} - \gamma b_{ij,t}) v^N_{x_i,t} v^N_{x_j,t} + \sum_{i=1}^{n} c_i v^N_{x_i,t} v^N_t + c_0 v^N_t v^N_t \right]
\]

\[
- \left(f^0_{0,t} + \gamma f^0_{0,t} \right) v^N_t + \sum_{i=1}^{n} \left(f^0_{i,t} + \gamma f^0_{i,t} \right) v^N_{x_i,t} \right) e^{\gamma t} \right] dx dt + \frac{1}{\varepsilon} \int_{t_1}^{T} \langle B_t(v^N), v^N_t \rangle dt = 0.
\]

(14)

Taking into account the inequality \(\langle B_t(v^N), v^N_t \rangle \geq 0 \) [16, p. 413], conditions of the theorem, and estimates (10)–(12), we easily obtain the inequality

\[
\int_{\Omega_t} \left[|v^N_t|^2 + \sum_{i=1}^{n} |v^N_{x_i,t}|^2 \right] dx + \int_{Q_{t_1, \tau}} \left[\left(a_0 - \gamma b_0 + \frac{1}{2} b_1 - \frac{1}{2} \delta_0 c^1 - \delta_1 \right) \sum_{i=1}^{n} |v^N_{x_i,t}|^2 + \right.
\]

\[
+ \left. \left(c_0 - \gamma - \frac{1}{2\delta_0} - \delta_2 \right) |v^N_t|^2 \right] dx dt
\]

\[
\leq \mu_2 e^{-\gamma(p-2)t} \int_{\Omega_t} \left(|v^N|^p + \sum_{i=1}^{n} |v^N_{x_i}|^p \right) dx + \mu_1 F_{0, \gamma} + \mu_2 F_{1, \gamma}
\]

(15)
from equality (14). In (15), the constant μ_2 is independent of ε, N, and t_1, $\delta_0 > 0$, $\delta_1 > 0$, $\delta_2 > 0$, and

$$F_{\gamma,t} = \int_\Omega \sum_{i=1}^n |f_{i,t}(x,t)|^2 e^{2\gamma t} \, dx \, dt.$$

On the basis of estimate (12) and the Fatou lemma, we have

$$\int_{t_1}^T \liminf_{t \to t_1} \|v^N\|_{W^{1,p}(\Omega)}^p e^{-\gamma(t-2)t} \, dt \leq \mu_1 F_{0,\gamma}.$$

Hence,

$$e^{-\gamma(t-2)t} \liminf_{t \to t_1} \|v^N\|_{W^{1,p}(\Omega)}^p < \infty$$

for almost all $t \in [t_1, T]$. Then there exists $\bar{t} \in [T-1, T]$ such that the specified lower boundary is finite for $\tau = \bar{t}$. By replacing τ by \bar{t} and passing, if necessary, to a subsequence, we can consider that

$$e^{-\gamma(t-2)\bar{t}} \|v^N(\bar{t})\|_{W^{1,p}(\Omega)}^p < \mu_3,$$

where the constant μ_3 is independent of ε, N, and t_1.

On the basis of the conditions of the theorem, one can choose the numbers δ_0, δ_1, and δ_2 such that inequality (15) will imply [in view of estimate (16)] the estimate

$$\int_{Q_{0,t}} \left(|v^N_t|^2 + \sum_{i=1}^n |v_{x_i,t}^N|^2 \right) dx \, dt \leq \mu_4 (F_{0,\gamma} + F_{1,\gamma}),$$

where the constant μ_4 is independent of ε, N, and t_1.

Taking into account estimates (10)-(12), (17) and the monotonicity of the operators A_0, B, where the operator A_0 is defined by the formula

$$\langle A_0 w^1, w^2 \rangle = \int_\Omega \left(\sum_{i=1}^n \alpha_i |w_{x_i}^1|^p - p^{-2} w_{x_i}^1 w_{x_i}^2 + g |w^1|^p - p^{-2} w^1 w^2 \right) dx,$$

$$w^1, w^2 \in W^{1,p}(\Omega),$$

we can assert the existence of a boundary point $v^{\nu_0}(x,t)$ of the sequence $\{v^N(x,t)\}$ which satisfies the equality

$$\begin{align*}
\int_{Q_{0,t}} &\left[v^{\nu_0} w + \sum_{i,j=1}^n b_{ij} v^{\nu_0}_{x_i,w} w_{x_j} + \sum_{i,j=1}^n (a_{ij} - \gamma b_{ij}) v^{\nu_0}_{x_i,w} w_{x_j} + \sum_{i=1}^n c_i v^{\nu_0}_{x_i,w} + (c_0 - \gamma) v^{\nu_0} w \right] dx \, dt \\
&+ \int_{t_1}^T \left(e^{-\gamma(t-2)t} \langle A_0 v^{\nu_0}, w \rangle + \frac{1}{\varepsilon} \langle B(v^{\nu_0}), w \rangle \right) dt \\
&= \int_{Q_{0,t}} \left(f_0 w + \sum_{i=1}^n f_i w_{x_i} \right) e^{2\gamma t} dx \, dt \end{align*}$$

(18)
for an arbitrary function \(w \in L^p_{\text{loc}}((-\infty, \tau]; W^{1,p}(\Omega)) \), where \(t_1 \) is an arbitrary number from \([t_0, \tau]\).

Moreover, estimates (10)–(12) and (17) are valid for the function \(v^\tau_0(x, t) \). If one successively sets \(t_0 = \tau - 1 \), \(t_0 = \tau - 2 \), \(t_0 = \tau - k \), \(\ldots \), then one obtains a new sequence of functions \(\{v^k(x, t)\} \), each of which is a solution of Eq. (18) and satisfies estimates (10)–(12), (17). Therefore, the given sequence also has a boundary point \(v^k(x, t) \) that satisfies Eq. (18) and estimates (10)–(12), (17). Thus, one can select a subsequence \(\{v^k(x, t)\} \subset \{v^e(x, t)\} \) such that

\[
v^e_k \to v \quad \text{weakly in} \quad L^p((t_1, t_2), W^{1,p}(\Omega)),
\]

\[
v^e_k \to v \quad \text{weakly in} \quad L^2((t_1, t_2), H^1(\Omega)),
\]

\[
v^e_k \to v_t \quad \text{weakly in} \quad L^2((t_1, t_2), H^1(\Omega)),
\]

\[
v^e_k \to v \quad \text{uniformly in} \quad C([t_1, t_2], H^1(\Omega))
\]
as \(e \to 0 \) for arbitrary \(t_1, t_2 \in (-\infty, \tau], t_1 < t_2 \).

Taking into account the monotonicity of the operators \(A_0, \mathcal{B} \), we have

\[
A_0 v^k \to A_0 v \quad \text{weakly in} \quad L^p((t_1, t_2), (W^{1,p}(\Omega))^*),
\]

\[
\mathcal{B}(v^e_k) \to \mathcal{B}(v) \quad \text{weakly in} \quad L^2((t_1, t_2), (H^1(\Omega))^*)
\]
as \(e \to 0 \). By using equality (18), which is satisfied by the functions \(v^k(x, t) \) for \(\tau = t_2 \), we obtain

\[
\mathcal{B}(v^e_k) \to 0 \quad \text{weakly in} \quad L^2((t_1, t_2), (H^1(\Omega))^*)
\]

Hence, \(\mathcal{B}(v) = 0 \), i.e., \(v \in K \) for almost all \(t \in (-\infty, \tau] \). Now consider equality (18) for the functions \(v^k(x, t) \) and \(\tau = t_2 \) by setting \(w = (z - u^k)e^{-\gamma t}, u^k = v^k e^{-\gamma t} \), where \(t \in K \) for almost all \(t \in (-\infty, \tau] \), \(z \in H^1_{\text{loc}}((-\infty, \tau]; H^1(\Omega)) \cup L^p_{\text{loc}}((-\infty, \tau]; W^{1,p}(\Omega)) \):

\[
\int_{Q_{t_1, t_2}} \left[u^k(z - u^k) + \sum_{i,j=1}^n b_{ij} u^k_{x_i_j}(z_{x_j} - u^k_{x_j}) + \sum_{i,j=1}^n a_{ij} u^k_{x_i}(z_{x_j} - u^k_{x_j}) \right. \\
+ \sum_{i=1}^n c_i u^k_{x_i}(z - u) + c_0 u^k(z - u^k) \\
+ g |u^k|^{p-2} u^k(z - u^k) - f_0(z - u^k) - \sum_{i=1}^n f_i(z_{x_i} - u^k_{x_i}) \left. \right] \, dx \, dt \\
= \frac{1}{2} \int_{t_1}^{t_2} \langle B(z e^{-\gamma t}) - B(u^k e^{-\gamma t}), z - u^k \rangle \, dt \geq 0.
\]
After elementary transformations of the integral

\[
\int_{\Omega_{t_1,t_2}} \left[u_k^i(z-u_k) + \sum_{i,j=1}^{n} b_{ij,t} u_{x_i,t}^k (z_{x_j} - u_{x_j}^k) \right] dx dt,
\]

inequality (19) takes the form

\[
\int_{\Omega_{t_1,t_2}} \left[z^i(z-u_k^i) + \frac{1}{2} \sum_{i,j=1}^{n} b_{ij} z_{x_i,t}^k (z_{x_j}^k - u_{x_j}^k) (z_{x_j}^k - u_{x_j}^k) \right.
\]

\[
+ \sum_{i,j=1}^{n} b_{ij} z_{x_i,t}^k (z_{x_j}^k - u_{x_j}^k) + \sum_{i,j=1}^{n} a_{ij} u_{x_i}^k (z_{x_j}^k - u_{x_j}^k)
\]

\[
+ \sum_{i=1}^{n} \alpha_i |u_{x_i}^k|^p - 2 u_{x_i}^k (z_{x_i}^k - u_{x_i}^k) + \sum_{i=1}^{n} c_i u_{x_i}^k (z - u_{x_i}^k) + c_0 u^k (z - u^k)
\]

\[
+ g |u^k|^p - 2 u^k (z - u^k) - f_0 (z - u^k) - \sum_{i=1}^{n} f_i (z_{x_i} - u_{x_i}^k) \right] dx dt
\]

\[
\geq \frac{1}{2} \int_{\Omega_{t_1,t_2}} \left[\sum_{i,j=1}^{n} b_{ij} (z_{x_i} - u_{x_i}^k) (z_{x_j} - u_{x_j}^k) + |z - u^k|^2 \right] dx
\]

\[- \frac{1}{2} \int_{\Omega_{t_1,t_2}} \left[\sum_{i,j=1}^{n} b_{ij} (z_{x_i} - u_{x_i}^k) (z_{x_j} - u_{x_j}^k) + |z - u^k|^2 \right] dx. \quad (20)
\]

By setting \(z = u \) in (20), we obtain strong convergence of the sequence \(\{ u^k(x,t) \} \) to the function \(u(x,t) \) in the space \(W^{1,p}(\Omega) \). Therefore, one can pass to the limit in inequality (20) as \(k \to \infty \). In this case, we obtain inequality (1), i.e., the function \(u(x,t) \) is the required one. Theorem 2 is proved.

REFERENCES