Topological aspects in magnetic field dynamics

Simon Candelaresi
Twisted magnetic fields

Twisted fields are more likely to erupt (Canfield et al. 1999).

Twist increases the stability of magnetic fields in tokamaks.
Magnetic helicity

\[H_M = \int_V \mathbf{A} \cdot \mathbf{B} \, dV = 2n\phi_1\phi_2 \]

\[\phi_i = \int_{S_i} \mathbf{B} \cdot d\mathbf{S} \]

Realizability condition:

\[E_m(k) \geq k |H(k)|/2\mu_0 \]

Magnetic energy is bound from below by magnetic helicity.

Magnetic helicity conservation

\[\text{Re}_M \to \infty \]

\[\frac{dH_M}{dt} = 0 \]
Stability criteria

Ideal MHD: \(\mu = 0 \)

Induction equation: \(\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{U} \times \mathbf{B}) \)

Woltjer (1958):
\[
\frac{\partial}{\partial t} \int_{V} \mathbf{A} \cdot \mathbf{B} \, dV = 0
\]

Taylor (1974):
\[
\frac{\partial}{\partial t} \int_{\tilde{V}} \mathbf{A} \cdot \mathbf{B} \, dV = 0
\]

Conditions:
- **Constraint**
 \[\nabla \times \mathbf{B} = \alpha \mathbf{B} \]
- **Equilibrium**
 \[\nabla \times \mathbf{B} = \alpha(a, b) \mathbf{B} \]
 constant along field line

\(V \) total volume \(\tilde{V} \) volume along magnetic field line
Creation of magnetic field and magnetic helicity

Mean-field decomposition: \(\mathbf{B} = \overline{\mathbf{B}} + \mathbf{b} \)

Induction equation:
\[
\partial_t \overline{\mathbf{B}} = \eta \nabla^2 \overline{\mathbf{B}} + \nabla \times (\overline{\mathbf{U}} \times \overline{\mathbf{B}} + \overline{\mathbf{E}})
\]

Electromotive force:
\[
\overline{\mathbf{E}} = \mathbf{u} \times \mathbf{b} = \alpha \overline{\mathbf{B}} - \eta_t \nabla \times \overline{\mathbf{B}}
\]

\(\alpha\) effect:
\[
\alpha = \alpha_K + \alpha_M = -\tau \mathbf{\omega} \cdot \mathbf{u} / 3 + \mathbf{j} \cdot \mathbf{b} / (3\rho)
\]

Inverse cascade:
Large- and small-scale magnetic helicity of opposite sign is created.

Leorat et al., 1975
Interlocked flux rings

\[H_M \neq 0 \]

- Isothermal compressible gas
- Viscous medium
- Periodic boundaries

\[H_M = 0 \]
Interlocked flux rings

$\tau = 4$

$H_M = 0$

$H_M \neq 0$
Magnetic helicity rather than actual linking determines the field decay.
N-foil knots

3-foil 4-foil 5-foil 6-foil 7-foil

![Cinquefoil knot](image)

\[x(s) = \begin{pmatrix} (C + \sin s n_f) \sin[s(n_f - 1)] \\ (C + \sin s n_f) \cos[s(n_f - 1)] \\ D \cos s n_f \end{pmatrix} \]

* from Wikipedia, author: Jim.belk
Magnetic helicity is approximately conserved.

Self-linking is transformed into twisting after reconnection.
Slower decay for higher n_f.

N-foil knots
N-foil knots

$H_M = 2n\phi_1\phi_2$

$n_{app} = H_M / 2\phi^2$

$H_M = (n_f - 2)n_f\phi^2 / 2$
N-foil knots

\[\frac{2M(k)}{|H(k)|k} \]

Realizability condition more important for high \(n_f \).
IUCAA knot and Borromean rings

\[H_M = 0 \]

- Is magnetic helicity sufficient?
- Higher order invariants?
Reconnection characteristics

3 rings

Twisted ring + interlocked rings

2 twisted rings
Reconnection characteristics

Conversion of linking into twisting

Ruzmaikin and Akhmetiev (1994)
Magnetic energy decay

\[\frac{\langle B^2 \rangle}{\langle B_0^2 \rangle} \]

- \(t^{-1/2} \)
- \(t^{-1} \)
- \(t^{-3/2} \)

- IUCAA knot
- Borromean rings
- Helical triple rings
- Non-helical triple rings

\[t/t_{\text{res}} \]
Fixed point index

mapping: \((x, y) \rightarrow F_z(x, y)\)

Fixed points: \(F_1(x, y) = \begin{pmatrix} x \\ y \end{pmatrix}\)

Color coding:

Fixed point index:
\[T = \sum_i t_i \quad t_i = \pm 1 \]

Yeates et al. 2011
Magnetic braid configurations

AAA (trefoil knot) AABB (Borromean rings)
Field line tracing

Generalized flux function:

\[A(x, y) = \int_{z=0}^{z=1} A \cdot dl \]

Reconnection rate:

\[\sum_i \frac{dA(x_i)}{dt} \]
Conclusions

- Topology *can* constrain field decay.
- Stronger packing for high n_f leads to different decay slopes.
- Higher order invariants?
- Isolated helical structures inhibit energy decay.
- Reconsider realizability condition.

- Apply fixed point method to knots (braids).
- Monitor the reconnection rate.
References

Canfield et al. 1999

Canfield, R. C., Hudson, H. S., and McKenzie, D. E.
Sigmoidal morphology and eruptive solar activity.

Woltjer 1958

Woltjer, L.
A Theorem on Force-Free Magnetic Fields.

Taylor 1974

Taylor, J. B.
Relaxation of Toroidal Plasma and Generation of Reverse Magnetic Fields.

Leorat et al., 1975

Leorat, J., Frisch, U., and Pouquet, A.
Helical magnetohydrodynamic turbulence and the nonlinear dynamo problem.
References

Candelaresi and Brandenburg 2011
Simon Candelaresi, and Axel Brandenburg.
Decay of helical and non-helical magnetic knots.

Del Sordo et al. 2010
Fabio Del Sordo, Simon Candelaresi, and Axel Brandenburg.
Magnetic-field decay of three interlocked flux rings with zero linking number.

Ruzmaikin and Akhmetiev 1994
A. Ruzmaikin and P. Akhmetiev.
Topological invariants of magnetic fields, and the effect of reconnections.

Yeates et al. 2011
Yeates, A. R., Hornig, G. and Wilmot-Smith, A. L.
Topological Constraints on Magnetic Relaxation.
Magnetic energy decay

\[\frac{\langle B^2 \rangle}{\langle B_0^2 \rangle} \]

Graph showing the decay of magnetic energy with time, \(\tau \), for different states labeled as \(n=0 \) and \(\text{or} \) \(n=2 \). The graph includes lines labeled \(t^{-1/2} \) and \(t^{-3/2} \) to indicate different decay rates.
Simulations

- 256^3 mesh point
- Isothermal compressible gas
- Viscous medium
- Periodic boundaries

\[
\frac{\partial A}{\partial t} = U \times B + \eta \nabla^2 A
\]

\[
\frac{D U}{D t} = -c_s^2 \nabla \ln \rho + J \times B / \rho + F_{\text{visc}}
\]

\[
\frac{D \ln \rho}{D t} = -\nabla \cdot U
\]
Linking number

Sign of the crossings for the 4-foil knot

Number of crossings increases like n_f^2

$$H_M \propto n_{\text{linking}}$$

$$H_M \propto n_f^2$$

$$n_{\text{linking}} = (n_+ - n_-)/2$$
Helicity vs. energy

\[E_M \propto l_{\text{knot}} \propto n_f \]
\[H_M \propto n_f^2 \]

Knot is more strongly packed with increasing \(n_f \).

Magnetic energy is closer to its lower limit for high \(n_f \).